1. Home
  2. Disclaimer
  3. Required Tools
  4. 1. Big Data Overview
    1. 1.1. Introduction
    2. 1.2. Job Opportunities
    3. 1.3. What is Data?
    4. 1.4. How does it help?
    5. 1.5. Types of Data
    6. 1.6. The Big V's
      1. 1.6.1. Variety
      2. 1.6.2. Volume
      3. 1.6.3. Velocity
      4. 1.6.4. Veracity
      5. 1.6.5. Other V's
    7. 1.7. Trending Technologies
    8. 1.8. Big Data Concerns
    9. 1.9. Big Data Challenges
    10. 1.10. Data Integration
    11. 1.11. Scaling
    12. 1.12. Cap Theorem
    13. 1.13. Optimistic Concurrency
    14. 1.14. Eventual Consistency
    15. 1.15. Concurrent vs Parallel
    16. 1.16. GPL
    17. 1.17. DSL
    18. 1.18. Big Data Tools
    19. 1.19. NO Sql Databases
    20. 1.20. Learning Big Data means?
  5. 2. Developer Tools
    1. 2.1. Poetry
    2. 2.2. UV
    3. 2.3. Other Python Tools
    4. 2.4. Duck DB
    5. 2.5. JQ
  6. 3. Data Format
    1. 3.1. Common Data Formats
    2. 3.2. JSON
    3. 3.3. Parquet
    4. 3.4. Arrow
    5. 3.5. Delta
  7. 4. Protocol
    1. 4.1. HTTP
    2. 4.2. Monolithic Architecture
    3. 4.3. Statefulness
    4. 4.4. Microservices
    5. 4.5. Statelessness
    6. 4.6. Idempotency
    7. 4.7. REST API
    8. 4.8. API Performance
    9. 4.9. API in Big Data world
  8. 5. Advanced Python
    1. 5.1. Functional Programming Concepts
    2. 5.2. Code Quality & Safety
    3. 5.3. Decorator
    4. 5.4. Serialization Deserialization
    5. 5.5. Python Classes
    6. 5.6. Unit Testing
    7. 5.7. Data Frames
    8. 5.8. Error Handling
    9. 5.9. Logging
    10. 5.10. Flask
      1. 5.10.1. Setup
      2. 5.10.2. Flask Demo
      3. 5.10.3. Flask Demo-01
      4. 5.10.4. Flask Demo-02
      5. 5.10.5. Flask Demo-03
      6. 5.10.6. Flask Demo-04
      7. 5.10.7. Flask Demo-05
      8. 5.10.8. API Testing
      9. 5.10.9. Flask Demo Testing
  9. 6. NO SQL
    1. 6.1. Types of No SQL
    2. 6.2. Redis
      1. 6.2.1. Terms to know
      2. 6.2.2. Redis - (Rdbms) Mysql
      3. 6.2.3. Redis Cache Demo
      4. 6.2.4. Use Cases
      5. 6.2.5. Databases
      6. 6.2.6. Data Structures
        1. 6.2.6.1. Strings
        2. 6.2.6.2. List
        3. 6.2.6.3. Set
        4. 6.2.6.4. Hash
        5. 6.2.6.5. Pub Sub
        6. 6.2.6.6. Geospatial Index
        7. 6.2.6.7. Redis Python
      7. 6.2.7. Redis JSON
      8. 6.2.8. Redis Search
      9. 6.2.9. Persistence
      10. 6.2.10. Timeseries
    3. 6.3. Neo4J
      1. 6.3.1. Neo4j Terms
      2. 6.3.2. Software
      3. 6.3.3. Neo4j Components
      4. 6.3.4. Hello World
      5. 6.3.5. Examples
        1. 6.3.5.1. Mysql Neo4j
        2. 6.3.5.2. Sample Transactions
        3. 6.3.5.3. Sample
        4. 6.3.5.4. Create Nodes
        5. 6.3.5.5. Update Nodes
        6. 6.3.5.6. Relation
        7. 6.3.5.7. Putting it all-together
        8. 6.3.5.8. Commonly Used Functions
        9. 6.3.5.9. Data Profiling
        10. 6.3.5.10. Queries
        11. 6.3.5.11. Load CSV into Neo4J
        12. 6.3.5.12. Python Scripts
      6. 6.3.6. Certification
    4. 6.4. Mongodb
      1. 6.4.1. Sample JSON
      2. 6.4.2. Introduction
      3. 6.4.3. Software
      4. 6.4.4. Mongodb Best Practices
      5. 6.4.5. Mongodb Commands
      6. 6.4.6. Insert Document
      7. 6.4.7. Querying Mongodb
      8. 6.4.8. Update & Remove
      9. 6.4.9. Import
      10. 6.4.10. Logical Operators
      11. 6.4.11. Data Types
      12. 6.4.12. Operators
      13. 6.4.13. Aggregation Pipeline
      14. 6.4.14. Further Reading
      15. 6.4.15. Fun Task
        1. 6.4.15.1. Sample
  10. 7. Linux & Tools
    1. 7.1. Overview
    2. 7.2. CSV SQL
    3. 7.3. Linux Commands 01
    4. 7.4. Linux Commands 02
    5. 7.5. AWK
    6. 7.6. CSV Grep
    7. 7.7. CSV Kit
  11. 8. Tools
    1. 8.1. CICD Intro
    2. 8.2. CICD Tools
      1. 8.2.1. CI Yaml
      2. 8.2.2. CD Yaml
    3. 8.3. Containers
      1. 8.3.1. VMs or Containers
      2. 8.3.2. What Container does
      3. 8.3.3. Podman
      4. 8.3.4. Podman Examples
  12. 9. Cloud Everywhere
    1. 9.1. Types of Cloud Services
    2. 9.2. Challenges of Cloud Computing
    3. 9.3. High Availability
    4. 9.4. Azure Cloud
      1. 9.4.1. Services
      2. 9.4.2. Storages
      3. 9.4.3. Demo
    5. 9.5. Terraform
  13. 10. Data Engineering
    1. 10.1. Batch vs Streaming
    2. 10.2. Kafka
      1. 10.2.1. Kafka use cases
      2. 10.2.2. Kafka Software
      3. 10.2.3. Python Scripts
      4. 10.2.4. Different types of streaming
    3. 10.3. Quality & Governance
    4. 10.4. Medallion Architecture
    5. 10.5. Data Engineering Model
    6. 10.6. Data Mesh
  14. 11. Industry Trends
    1. 11.1. Roadmap Data Engineer
    2. 11.2. Notebooks vs IDE
    3. 11.3. Good Reads
  15. Tags

Adv Big Data and Tools

[Avg. reading time: 1 minute]

Flask Demo

  • Setup
  • Flask Demo
  • Flask Demo-01
  • Flask Demo-02
  • Flask Demo-03
  • Flask Demo-04
  • Flask Demo-05
  • API Testing
  • Flask Demo TestingVer 5.5.3